Título:
|
Smooth approximation of Lipschitz functions on Finsler manifolds
|
Autores:
|
Garrido, M. Isabel ;
Jaramillo Aguado, Jesús Ángel ;
Rangel, Yenny C.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Hindawi, 2013
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría diferencial
,
Tipo = Artículo
|
Resumen:
|
We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f : M -> R defined on a connected, second countable Finsler manifold M, for each positive continuous function epsilon : M -> (0, infinity) and each r > 0, there exists a C-1-smooth Lipschitz function g : M -> R such that vertical bar f(x) - g(x)vertical bar C-b(1)(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.
|
En línea:
|
https://eprints.ucm.es/id/eprint/23180/1/Jaramillo200.pdf
|