Título:
|
Model Selection in a Composite Likelihood Framework Based on Density Power Divergence
|
Autores:
|
Castilla González, Elena ;
Martín Apaolaza, Nirian ;
Pardo Llorente, Leandro ;
Zografos, Konstantinos
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
https://www.mdpi.com/, 2020
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Materia = Ciencias: Matemáticas: Probabilidades
,
Tipo = Artículo
|
Resumen:
|
This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter ?. After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion.
|
En línea:
|
https://eprints.ucm.es/id/eprint/63188/1/entropy-22-00270-v3.pdf
|