Título:
|
On Denjoy-Dunford and Denjoy-Pettis integrals.
|
Autores:
|
Gámez Merino, José Luis ;
Mendoza Casas, José
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Polish Acad Sciencies Inst Mathematics, 1998
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
The two main results of this paper are the following: (a) If X is a Banach space and f : [a, b] --> X is a function such that x*f is Denjoy integrable for all x* is an element of X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [a, b] --> c(0) which is not Pettis integrable on any subinterval in [a, b], while integral(J)f belongs to co for every subinterval J in [a, b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dunford and Denjoy-Pettis integrals are studied.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15426/1/02.pdf
|