Título:
|
The norm of the Riemann-Liouville operator on L-p[0,1]: A probabilistic approach
|
Autores:
|
Adell, José A. ;
Gallardo Gutiérrez, Eva A.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
London Mathematical Society, 2007
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
We obtain explicit lower and upper bounds for the norm of the Riemann-Liouville operator V-s on L-p[0, 1] which are asymptotically sharp, thus completing previous results by Eveson. Similar statements are shown with respect to the norms parallel to V-s f parallel to(p), whenever f satisfies certain smoothness properties. It turns out that the correct rate of convergence of parallel to V-s f parallel to(p) as s -> infinity depends both on the infimum of the support of f and on the degree of smoothness of f. We use a probabilistic approach which allows us to give unified proofs.
|
En línea:
|
https://eprints.ucm.es/id/eprint/21068/1/Gallardo12oficial.pdf
|