Título:
|
Solving nonlinear rational expectations models by eigenvalue-eigenvector decompositions
|
Autores:
|
Novales Cinca, Alfonso ;
Domínguez, Emilio ;
Pérez, Javier ;
Ruiz, Jesus
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE), 1998
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by_nc_sa
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Procesos estocásticos
,
Tipo = Documento de trabajo o Informe técnico
|
Resumen:
|
We provide a summarized presentation of solution methods for rational expectations models, based on eigenvalue/eigenvector decompositions. These methods solve systems of stochastic linear difference equations by relying on the use of stability conditions derived from the eigenvectors associated to unstable eigenvalues of the coefficient matrices in the system. For nonlinear models, a linear approximation must be obtained, and the stability conditions are approximate, This is however, the only source of approximation error, since the nonlinear structure of the original model is used to produce the numerical solution. After applying the method to a baseline stochastic growth model, we explain how it can be used: i) to salve some identification problems that may arise in standard growth models, and ii) to solve endogenous growth models.
|
En línea:
|
https://eprints.ucm.es/id/eprint/28797/1/9808.pdf
|