Título:
|
Dieudonné operators on C(K,E)
|
Autores:
|
Bombal Gordón, Fernando ;
Cembranos, Pilar
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Polish Academy of Sciences, 1986
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría diferencial
,
Tipo = Artículo
|
Resumen:
|
A Banach space operator is called a Dieudonné operator if it maps weakly Cauchy sequences to weakly convergent sequences. A space E is said to have property (D) if, whenever K is a compact Hausdorff space and T is an operator from C(K,E) into a space F , T is a Dieudonné operator if and only if its representing measure is both strongly additive and has for its values Dieudonné operators from E into F . The purpose of this paper is to show that if E ? has the Radon-Nikodým property then E has (D) if and only if E ?? has the Radon-Nikodým property.
|
En línea:
|
https://eprints.ucm.es/id/eprint/18038/1/Bombal100.pdf
|