Resumen:
|
Currently, there is a broad interest in the control over creating ordered electroactive nanostructures, in which electron donors and acceptors are organized at similar length scales. In this article, a simple and efficient procedure is reported en-route towards the construction of 1D arrays of crystalline pristine C60 and phenyl-C61-butyric acid methyl ester (PCBM) coated onto supramolecular fibers based on exTTFpentapeptides. The resulting n/p-nanohybrids have been fully characterized by a variety of spectroscopic (FTIR, UV-Vis, circular dichroism, Raman and transient absorption), microscopic (AFM, TEM, and SEM), and powder diffraction (X-ray) techniques. Our experimental findings document the tendency of electroactive exTTF-fibers to induce the crystallization of C60 and PCBM, on one hand, and to afford 1D n/p-nanohybrids, on the other hand. Furthermore, photogenerated radical ion pairs, formed upon visible light irradiation of the n/p-nanohybrids, feature lifetimes on the range of 0.9-1.2 ns.
|