Título:
|
Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical
|
Autores:
|
Ancochea Bermúdez, José María ;
Campoamor Stursberg, Otto Ruttwig ;
García Vergnolle, Lucía
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Hikari, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Álgebra
,
Tipo = Artículo
|
Resumen:
|
Let g = s n r be an indecomposable Lie algebra with nontrivial semisimple Levi subalgebra s and nontrivial solvable radical r. In this note it is proved that r cannot be isomorphic to a filiform nilpotent Lie algebra. The proof uses the fact that any Lie algebra g = snr with filiform radical would degenerate (even contract) to the Lie algebra snfn, where fn is the standard graded filiform
Lie algebra of dimension n = dim r. This leads to a contradiction, since no such indecomposable algebra snr with r = fn exists
|
En línea:
|
https://eprints.ucm.es/id/eprint/20726/1/ancochea09.pdf
|