Título:
|
Non-Euclidean symmetries of first-order optical systems
|
Autores:
|
Monzón Serrano, Juan José ;
Montesinos Amilibia, José María ;
Sánchez Soto, Luis Lorenzo
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
The Optical Society Of America, 2020-02
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Optica
,
Materia = Ciencias Biomédicas: Óptica y optometría: Óptica geométrica e instrumental
,
Tipo = Artículo
|
Resumen:
|
We revisit the basic aspects of first-order optical systems from a geometrical viewpoint. In the paraxial regime, there is a wide family of beams for which the action of these systems can be represented as a Möbius transformation. We examine this action from the perspective of non-Euclidean hyperbolic geometry and resort to the isometric-circle method to decompose it as a reflection followed by an inversion in a circle. We elucidate the physical meaning of these geometrical operations for basic elements, such as free propagation and thin lenses, and link them with physical parameters of the system.
|
En línea:
|
https://eprints.ucm.es/59798/1/Monz%C3%B3n_josaa-37-2-225.pdf
|