Título:
|
On very non-linear subsets of continuous functions
|
Autores:
|
Botelho, G. ;
Cariello, Daniel ;
Pellegrino, D. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Oxford University Press, 2014
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
In this paper we continue the study initiated by Gurariy and Quarta in 2004 on the existence of linear spaces formed, up to the null vector, by continuous functions that attain the maximum only at one point. Inserting a topological flavor to the subject, we prove that results already known for functions defined on certain subsets of R are actually true for functions on quite general topological spaces. In the line of the original results of Gurariy and Quarta, we prove that, depending on the desired dimension, such subspaces may exist or not.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29171/1/1212.4395v1.pdf
|