Título:
|
Strong resilience of topological codes to depolarization
|
Autores:
|
Bombin, H. ;
Ruben, S. Andrist ;
Masayuki, Ohzeki ;
Katzgraber, Helmut G. ;
Martín-Delgado Alcántara, Miguel Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society (APS), 2012-04-30
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Tipo = Artículo
|
Resumen:
|
The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3)% when noise correlations are taken into account. Remarkably, this result agrees within error bars with the result for a different class of codes—topological color codes—where the mapping yields interesting new types of interacting eight-vertex models.
|
En línea:
|
https://eprints.ucm.es/id/eprint/47734/1/Mart%C3%ADn%20Delgado%20Alc%C3%A1ntara%20M%C3%81%2018%20LIBRE.pdf
|