Título:
|
Minimal periods of semilinear evolution equations with Lipschitz nonlinearity
|
Autores:
|
Robinson, James C. ;
Vidal López, Alejandro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2006-01-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
It is known that any periodic orbit of a Lipschitz ordinary differential equation must have period at least 2?/L, where L is the Lipschitz constant of f. In this paper, we prove a similar result for the semilinear evolution equation du/dt=-Au+f(u): for each ? with 0 ? 1/2 there exists a constant K? such that if L is the Lipschitz constant of f as a map from D(A?) into H then any periodic orbit has period at least K?L-1/(1-?). As a concrete application we recover a result of Kukavica giving a lower bound on the period for the 2d Navier–Stokes equations with periodic boundary conditions.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12584/1/2005minimal-16.pdf
|