Título:
|
Learning a local symmetry with neural networks
|
Autores:
|
Decelle, A. ;
Martín Mayor, Víctor ;
Seoane, B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2019-11-06
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física
,
Tipo = Artículo
|
Resumen:
|
We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns: the gauge symmetry Z(2). This symmetry is present in physical problems from topological transitions to quantum chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity.
|
En línea:
|
https://eprints.ucm.es/58091/1/Mart%C3%ADnMayorV%20Libre%2059.pdf
|