Título:
|
On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary
|
Autores:
|
Díaz Díaz, Jesús Ildefonso ;
Rakotoson, Jean Michel Theresien
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2009-08-01
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We study the differentiability of very weak solutions v is an element of L(1) (Omega) of (v, L* phi)(0) = (f, phi)(0) for all phi is an element of C(2)((Omega) over bar) vanishing at the boundary whenever f is in L(1) (Omega, delta), with delta = dist(x, partial derivative Omega), and L* is a linear second order elliptic operator with variable coefficients. We show that our results are optimal. We use symmetrization techniques to derive the regularity in Lorentz spaces or to consider the radial solution associated to the increasing radial rearrangement function (f) over tilde of f.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15112/1/14.pdf
|