Título:
|
Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot
|
Autores:
|
Creffield, Charles E. ;
Jefferson, John H ;
Sarkar,, Sarben ;
Tipton, D. L. J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2000-09-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física de materiales
,
Materia = Ciencias: Física: Física del estado sólido
,
Tipo = Artículo
|
Resumen:
|
The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations, including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a basis of localized one-electron Hartree states. The hopping matrix element t comprises the usual kinetic energy term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact results. The phase of t gives rise to the usual Peierls factor, related to the flux through a square defined by the peaks of the Hartree wave functions. The magnitude of t decreases slowly with magnetic field as the Hartree functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations.
|
En línea:
|
https://eprints.ucm.es/33729/1/Creffield%20C%2028%20LIBRE.pdf
|