Título:
|
The inverse eigenvalue problem for quantum channels
|
Autores:
|
Wolf, Michael ;
Pérez García, David
|
Tipo de documento:
|
texto impreso
|
Fecha de publicación:
|
2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Presentado
,
Materia = Ciencias: Física: Física matemática
,
Materia = Ciencias: Física: Teoría de los quanta
,
Tipo = Artículo
|
Resumen:
|
Given a list of n complex numbers, when can it be the spectrum of a quantum channel, i.e., a completely positive trace preserving map? We provide an explicit solution for the n=4 case and show that in general the characterization of the non-zero part of the spectrum can essentially be given in terms of its classical counterpart - the non-zero spectrum of a stochastic matrix. A detailed comparison between the classical and quantum case is given. We discuss applications of our findings in the analysis of time-series and correlation functions and provide a general characterization of the peripheral spectrum, i.e., the set of eigenvalues of modulus one. We show that while the peripheral eigen-system has the same structure for all Schwarz maps, the constraints imposed on the rest of the spectrum change immediately if one departs from complete positivity.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12156/1/1005.4545v1.pdf
|