Título:
|
Invariant differential equations and the Adler-Gel'fand-Dikii bracket
|
Autores:
|
González López, Artemio ;
Hernández Heredero, Rafael ;
Beffa, Gloria Marí
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Institute of Physics, 1997-11
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
In this paper we find an explicit formula for the most general vector evolution of curves on RPn?1 invariant under the projective action of SL(n, R). When this formula is applied to the projectivization of solution curves of scalar Lax operators with periodic coefficients, one obtains a corresponding evolution in the space of such operators. We conjecture that this evolution is identical to the second KdV Hamiltonian evolution under appropriate conditions. These conditions give a Hamiltonian interpretation of general vector differential invariants for the projective action of SL(n, R), namely, the SL(n, R) invariant evolution can be written so that a general vector differential invariant corresponds to the Hamiltonian pseudo-differential operator. We find common coordinates and simplify both evolutions so that one can attempt to prove the equivalence for arbitrary n .
|
En línea:
|
https://eprints.ucm.es/32862/3/ContentServer.pdf
|