Título:
|
Fixed point indices of planar continuous maps
|
Autores:
|
Hernández Corbato, Luis ;
Romero Ruiz del Portal, Francisco
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Institute of Mathematical Sciences, 2015-07
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Tipo = Artículo
|
Resumen:
|
We characterize the sequences of fixed point indices {i(f(n) ,p)} n >= 1 of fixed points that are isolated as an invariant set for a continuous map f in the plane. In particular, we prove that the sequence is periodic and i(f(n) ,p) = 0. This characterization allows us to compute effectively the Lefschetz zeta functions for a wide class of continuous maps in the 2-sphere, to obtain new results of existence of infinite periodic orbits inspired on previous articles of J. Franks and to give a partial answer to a problem of M. Shub about the growth of the number of periodic orbits of degree-d maps in the 2-sphere.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29479/1/RomeroRuiz100.pdf
|