Título:
|
On knots that are universal
|
Autores:
|
Montesinos Amilibia, José María ;
Hilden, Hugh Michael ;
Lozano Imízcoz, María Teresa
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 1985
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
The authors construct a cover S3?S3 branched over the "figure eight" knot with preimage the "roman link" and a cover S3?S3 branched over the roman link with preimage containing the Borromean rings L. Since L is universal (i.e. every closed, orientable 3-manifold can be represented as a covering of S3 branched over L) it follows that the "figure eight'' knot is universal, thereby answering a question of Thurston in the affirmative. More generally, it is shown that every rational knot or link which is not toroidal is universal
|
En línea:
|
https://eprints.ucm.es/id/eprint/17185/1/Montesinos11.pdf
|