Resumen:
|
Large scale disasters, such as the one caused by the Typhoon Haiyan, which devastated portions of the Philippines in 2013, or the catastrophic 2010 Haiti earthquake, which caused major damage in Port-au-Prince and other settlements in the region, have massive and lasting effects on populations. Nowadays, disasters can be considered as a consequence of inappropriately managed risk. These risks are the product of hazards and vulnerability, which refers to the extent to which a community can be affected by the impact of a hazard. In this way, developing countries, due to their greater vulnerability, suffer the highest costs when a disaster occurs. Disaster relief is a challenge for politics, economies, and societies worldwide. Humanitarian organizations face multiple decision problems when responding to disasters. In particular, once a disaster strikes, the distribution of humanitarian aid to the population affected is one of the most fundamental operations in what is called humanitarian logistics. This term is defined as the process of planning, implementing and controlling the effcient, cost-effective ow and storage of goods and materials as well as related information, from the point of origin to the point of consumption, for the purpose of meeting the end bene- ciaries' requirements and alleviate the suffering of vulnerable people, [the Humanitarian Logistics Conference, 2004 (Fritz Institute)]. During the last decade there has been an increasing interest in the OR/MS community in studying this topic, pointing out the similarities and differences between humanitarian and business logistics, and developing models suited to handle the special characteristics of these problems. Several authors have pointed out that traditional logistic objectives, such as minimizing operation cost, are not the most relevant goals in humanitarian operations. Other factors, such as the time of operation, or the design of safe and equitable distribution plans, come to the front, and new models and algorithms are needed to cope with these special features. Up to six attributes related to the distribution plan are considered in our multi-criteria approach. Even though there are usually simple ways to measure the cost of an operation, the evaluation of some other attributes such as security or equity is not easy. As a result, several attribute measures are proposed and developed, focusing on different aspects of the solutions. Furthermore, when metaheuristic solution methods are used, considering non linear objective functions does not increase the complexity of the algorithms significantly, and thus more accurate measures can be utilized...
|