Título:
|
Characterizing symmetries in a projected entangled pair state
|
Autores:
|
Pérez García, David ;
Sanz, M. ;
González-Guillén, C.M. ;
Wolf, M.M. ;
Cirac, J.I.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IOP, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.
|
En línea:
|
https://eprints.ucm.es/id/eprint/17666/1/PerezGarcia14.pdf
|