Título:
|
The Berry-Tabor conjecture for spin chains of Haldane-Shastry type
|
Autores:
|
Barba, J. C. ;
Finkel Morgenstern, Federico ;
González López, Artemio ;
Rodríguez González, Miguel Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
EPL Association, European Physical Society, 2008-07
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
According to a long-standing conjecture of Berry and Tabor, the distribution of the spacings between consecutive levels of a "generic" integrable model should follow Poisson's law. In contrast, the spacings distribution of chaotic systems typically follows Wigner's law. An important exception to the Berry-Tabor conjecture is the integrable spin chain with long-range interactions introduced by Haldane and Shastry in 1988, whose spacings distribution is neither Poissonian nor of Wigner's type. In this letter we argue that the cumulative spacings distribution of this chain should follow the "square root of a logarithm" law recently proposed by us as a characteristic feature of all spin chains of Haldane-Shastry type. We also show in detail that the latter law is valid for the rational counterpart of the Haldane-Shastry chain introduced by Polychronakos.
|
En línea:
|
https://eprints.ucm.es/id/eprint/31355/1/Finkelpreprint.pdf
|