Título:
|
Extension of multilinear operators on Banach spaces
|
Autores:
|
Villanueva, Ignacio ;
Cabello Sánchez, Félix ;
García, R.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Universidad de Extremadura, Departamento de Matemáticas, 2001
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
This paper considers the problem of extending multilinear forms on a Banach space X to a larger space Y containing it as a closed subspace. For instance, if X is a subspace of Y and X0 ! Y 0 extends linear forms, then the induced Nicodemi operators extend multilinear forms. It is shown that an extension operator X0 ! Y 0 exists if and only if X is locally complemented in Y . Also, these extension operators preserve the symmetry if and only if X is regular. Finally, multlinear characterizations are obtained of some classical Banach space properties (Dunford-Pettis, etc.) related to weak compactness in terms of operators having Z-valued Aron-Berner extensions.
|
En línea:
|
https://eprints.ucm.es/id/eprint/11524/1/2000Extensionofmultilinearoperators.pdf
|