Título:
|
A canonical form for Projected Entangled Pair States and applications
|
Autores:
|
Sanz, Mikel ;
Pérez García, David ;
Cirac, Juan I. ;
Wolf, Michael ;
González Guillén, Carlos Eduardo
|
Tipo de documento:
|
texto impreso
|
Fecha de publicación:
|
2009
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física matemática
,
Materia = Ciencias: Física: Teoría de los quanta
,
Tipo = Artículo
|
Resumen:
|
We show that two different tensors defining the same translational invariant injective Projected Entangled Pair State (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12163/1/0908.1674v1.pdf
|