Título:
|
Specializations and a local homeomorphism theorem for real Riemann surfaces of rings
|
Autores:
|
Puente Muñoz, María Jesús de la
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Pacific Journal of Mathematics, 1996-12
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
Let phi : k --> A and f : A --> R be ring morphisms, R a real ring. We prove that if f : A --> R is etale, then the corresponding mapping between real Riemann surfaces S-r(f) : S-r(R/k) --> S-r(A/k) is a local homeomorphism. Several preparatory results are proved, as well. The most relevant among these are: (1) a Chevalley's theorem for real Riemann surfaces on the preservation of constructibility via S-r(f), and (2) an analysis of the closure operator on real Riemann surfaces. Constructible sets are dealt with by means of a suitable first-order language.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12782/1/1996specializations.pdf
|