Título:
|
On the Bohnenblust-Hille inequality and a variant of Littlewood's 4/3 inequality
|
Autores:
|
Nuñez Alarcón, D ;
Pellegrino, Daniel ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2013
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
The search for sharp constants for inequalities of the type Littlewood's 4/3 and Bohnenblust-Hille has lately shown unexpected applications in many fields such as Analytic Number Theory, Quantum Information Theory, or in results on n-dimensional Bohr radii. Recent estimates obtained for the multilinear Bohnenblust-Hille inequality (for real scalars) have been used, as a crucial tool, by A. Montanaro in order to solve problems in Quantum XOR games. Here, among other results, we obtain new upper bounds for the Bohnenblust-Hille constants (for complex scalars). For bilinear forms, we provide optimal constants of variants of Littlewood's 4/3 inequality (for real scalars) when the exponent 4/3 is replaced by any r >= 4/3. We also prove that the optimal constants in real case are always strictly greater than those from the complex case.
|
En línea:
|
https://eprints.ucm.es/id/eprint/19924/1/Seoane02.pdf
|