Título:
|
Linear structure of sets of divergent sequences and series
|
Autores:
|
Aizpuru, A. ;
Pérez Eslava, C. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science INC, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We show that there exist infinite dimensional spaces of series, every non-zero element of which, enjoys certain pathological property. Some of these properties consist on being (i) conditional convergent, (ii) divergent, or (iii) being a subspace of l(infinity) of divergent series. We also show that the space 1(1)(omega)(X) of all weakly unconditionally Cauchy series in X has an infinite dimensional vector space of non-weakly convergent series, and that the set of unconditionally convergent series on X contains a vector space E, of infinite dimension, so that if x is an element of E \ {0} then Sigma(i) parallel to x(i)parallel to = infinity.
|
En línea:
|
https://eprints.ucm.es/id/eprint/20212/1/Seoane44.pdf
|