Título:
|
Orderings and maximal ideals of rings of analytic functions.
|
Autores:
|
Díaz-Cano Ocaña, Antonio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
America Mathematical Society, 2005
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
We prove that there is a natural injective correspondence between the maximal ideals of the ring of analytic functions on a real analytic set X and those of its subring of bounded analytic functions. By describing the maximal ideals in terms of ultrafilters we see that this correspondence is surjective if and only if X is compact. This approach is also useful for studying the orderings of the field of meromorphic functions on X.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15040/1/53ea5d090cf2fb1b9b677a5f.pdf
|