Título:
|
Real Lie algebras of differential operators and quasi-exactly solvable potentials
|
Autores:
|
González López, Artemio ;
Kamran, Niky ;
Olver, Peter J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Royal Society of London, 1996-03-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
We first establish some general results connecting real and complex Lie algebras ofirst-order diferential operators. These are applied to completely classify all finite-dimensional real Lie algebras of first-order diferential operators in R^2 . Furthermore, we find all algebras which are quasi-exactly solvable, along with the associated finitedimensional modules of analytic functions. The resulting real Lie algebras are used to construct new quasi-exactly solvable Schrödinger operators on R^2
|
En línea:
|
https://eprints.ucm.es/32868/1/gonzalezlopez47preprint.pdf
|