Título:
|
Spaces of holomorphic functions and germs on quotients
|
Autores:
|
Ansemil, José María M. ;
Aron, Richard M. ;
Ponte, Socorro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science Publ. B. V., 1992
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Sección de libro
|
Resumen:
|
Let E be a complex locally convex space, F a closed subspace, and let ? be the canonical quotient mapping from E onto E/F. Let H(U) [resp. H(K)] be the set of holomorphic functions on the open set U of E [resp. the set of germs of holomorphic functions on the compact set K of E]. Let ?? be the mapping induced by ? from H(?(U)) [resp. H(?(K))] into H(U) [resp. H(K)].
?? is always continuous for the natural topologies; the aim of the paper is to give a survey of the results concerning when ?? is, or is not, an embedding.
|