Título:
|
Geometry of Banach spaces with property ?
|
Autores:
|
Granero, A. S. ;
Jiménez Sevilla, María del Mar ;
Moreno, José Pedro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Hebrew University Magnes Press, 1999-12
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Álgebra
,
Tipo = Artículo
|
Resumen:
|
We prove that every Banach space can be isometrically and 1-complementably embedded into a Banach space which satisfies property ? and has the same character of density. Then we show that, nevertheless, property ? satisfies a hereditary property. We study strong subdifferentiability of norms with property ? to characterize separable polyhedral Banach spaces as those admitting a strongly subdifferentiable ? norm. In general, a Banach space with such a norm is polyhedral. Finally, we provide examples of non-reflexive spaces whose usual norm fails property ? and yet it can be approximated by norms with this property, namely (L 1[0,1], ?·?1) and (C(K), ?·??) whereK is a separable Hausdorff compact space
|
En línea:
|
https://eprints.ucm.es/id/eprint/22290/1/Jimenez19.pdf
|