Resumen:
|
Our ability to discriminate motion direction in a Gabor patch diminishes with increasing size and contrast, indicating surround suppression. Discrimination is also impaired by a static low-spatial-frequency patch added to the moving stimulus, suggesting an antagonism between sensors tuned to fine and coarse features. Using Bayesian staircases, we measured duration thresholds in motion-direction discrimination tasks using vertically oriented Gabor patches moving at 2°/s. In two experiments, we tested two contrasts (2.8% and 46%), five window sizes (from 0.7° to 5°), and two spatial frequencies (1 c/deg and 3 c/deg), either presented alone or added to a static pattern. When the moving pattern was presented alone, duration thresholds increased with size at high contrast and decreased with size at low contrast. At low contrast, when a static pattern of 3 c/deg was added to a moving pattern of 1 c/deg, duration thresholds were similar to the case when the moving pattern was presented alone; however, at high contrast, duration thresholds were facilitated, eliminating the effect of surround suppression. When a static pattern of 1 c/deg was added to a moving pattern of 3 c/deg, duration thresholds increased about 4 times for high contrast and 2 times for low contrast. These results show that the antagonism between sensors tuned to fine and coarse scales is more complex than surround suppression, suggesting that it reflects the operation of a different mechanism.
|