Título:
|
Characterization of a Banach-Finsler manifold in terms of the algebras of smooth functions
|
Autores:
|
Jaramillo Aguado, Jesús Ángel ;
Jiménez Sevilla, María del Mar ;
Sánchez González, L.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Mathematical Society, 2014-03
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/embargoedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
In this note we give sufficient conditions to ensure that the weak Finsler structure of a complete C-k Finsler manifold M is determined by the normed algebra C-b(k)(M) of all real-valued, bounded and C-k smooth functions with bounded derivative defined on M. As a consequence, we obtain: (i) the Finsler structure of a finite-dimensional and complete C-k Finsler manifold M is determined by the algebra C-b(k)(M); (ii) the weak Finsler structure of a separable and complete C-k Finsler manifold M modeled on a Banach space with a Lipschitz and C-k smooth bump function is determined by the algebra C-b(k)(M); (iii) the weak Finsler structure of a C-1 uniformly bumpable and complete C-1 Finsler manifold M modeled on a Weakly Compactly Generated (WCG) Banach space is determined by the algebra C-b(1)(M); and (iv) the isometric structure of a WCG Banach space X with a C-1 smooth bump function is determined by the algebra C-b(1)(X).
|
En línea:
|
https://eprints.ucm.es/id/eprint/24700/1/JimenezSevilla200libre.pdf
|