Título:
|
Microstructural characterization by electron backscatter diffraction of a hot worked Al-Cu-Mg alloy
|
Autores:
|
Cepeda Jiménez, C. M. ;
Hidalgo Alcalde, Pedro ;
Carsi, M. ;
Ruano, O. A. ;
Carreño, F.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science SA, 2011-03-25
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física de materiales
,
Tipo = Artículo
|
Resumen:
|
Hot torsion tests to fracture to simulate thermomechanical processing were carried out on a solution-treated Al-Cu-Mg alloy (Al 2024-T351) at constant temperature. Torsion tests were conducted in the range 278-467 degrees C, and at two strain rates, 2.1 and 4.5 s(-1). Electron backscatter diffraction (EBSD) was employed to characterize the microtexture and microstructure before and after testing. The microstructural evolution during torsion deformation at different temperatures and strain rate conditions determines the mechanical properties at room temperature of the Al 2024 alloy since grain refining, dynamic precipitation and precipitate coalescence occur during the torsion test. These mechanical properties were measured by Vickers microhardness tests. At 408 degrees C and 2.1 s(-1) the optimum combination of solid solution and incipient precipitation gives rise to maximum ductility and large fraction of fine and misoriented grains (f(HAB) = 54%). In contrast, the increase in test temperature to 467 degrees C produces a sharp decrease in ductility, attributed to the high proportion of alloying elements in solid solution. Both the stress-strain flow curves obtained by torsion tests and the final microstructures are a consequence of recovery phenomena and the dynamic nature of the precipitation process taking place during deformation.
|
En línea:
|
https://eprints.ucm.es/id/eprint/25345/1/HidalgoP04.pdf
|