Título:
|
Cartan subgroups and regular points of o?minimal groups
|
Autores:
|
Baro González, Elías ;
Berarducci, Alessandro ;
Otero, Margarita
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
London Mathematical Society, 2019-10-01
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Materia = Ciencias: Matemáticas: Lógica simbólica y matemática
,
Tipo = Artículo
|
Resumen:
|
Let G be a group definable in an o-minimal structure M. We prove that the union of the Cartan subgroups of G is a dense subset of G. When M is an expansion of a real closed field we give a characterization of Cartan subgroups of G via their Lie algebras which allow us to prove firstly, that every Cartan subalgebra of the Lie algebra of G is the Lie algebra of a definable subgroup – a Cartan subgroup of G –, and secondly, that the set of regular points of G – a dense subset of G – is formed by points which belong to a unique Cartan subgroup of G.
|
En línea:
|
https://eprints.ucm.es/57844/1/Baro10.pdf
|