Título:
|
K3 double structures on Enriques surfaces and their smoothings
|
Autores:
|
Gallego Rodrigo, Francisco Javier ;
Purnaprajna, Bangere P. ;
González Andrés, Miguel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science B.V. (North-Holland), 2008-05
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
Let Y be a smooth Enriques surface. A K3 carpet on Y is a double structure on Y with the same invariants as a smooth K3 surface (i.e., regular and with trivial canonical sheaf). The surface Y possesses an etale K3 double cover X ->(pi) over barY. We prove that pi can be deformed to a family X -> P-T*(N) of projective embeddings of K3 surfaces and that any projective K3 carpet on Y arises from such a family as the flat limit of smooth, embedded K3 surfaces.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12963/1/2008k3.pdf
|