Título:
|
L-p[0,1] \ boolean OR(q > p) L-q[0,1] is spaceable for every p > 0
|
Autores:
|
Botelho, G. ;
Favaro, V.V. ;
Pellegrino, Daniel ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science, 2012
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
In this short note we prove the result stated in the title: that is, for every p > 0 there exists an infinite dimensional closed linear sub-space of L-p[0, 1] every nonzero element of which does not belong to boolean OR(q>p) L-q[0, 1]. This answers in the positive a question raised in 2010 by R.M. Aron on the spaceability of the above sets (for both, the Banach and quasi-Banach cases). We also complete some recent results from Botelho et al. (2011) [3] for subsets of sequence spaces. (C) 2012 Elsevier Inc. All rights reserved.
|
En línea:
|
https://eprints.ucm.es/id/eprint/19973/1/Seoane07_Elsevier.pdf
|