Título:
|
A mathematical model for a T cell fate decision algorithm during immune response
|
Autores:
|
Arias, Clemente F. ;
Herrero, Miguel A. ;
Acosta Salmerón, Francisco Javier ;
Fernández Arias, Clemente
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2014-05-21
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias Biomédicas: Biología: Biología celular
,
Materia = Ciencias Biomédicas: Biología: Biología molecular
,
Tipo = Artículo
|
Resumen:
|
We formulate and analyze an algorithm of cell fate decision that describes the way in which division vs. apoptosis choices are made by individual T cells during an infection. Such model involves a minimal number of known biochemical mechanisms: it basically relies on the interplay between cell division and cell death inhibitors on one hand, and membrane receptors on the other. In spite of its simplicity, the proposed decision algorithm is able to account for some significant facts in immune response. At the individual level, the existence of T cells that continue to replicate in the absence of antigen and the possible occurrence of T cell apoptosis in the presence of antigen are predicted by the model. Moreover, the latter is shown to yield an emergent collective behavior, the observed delay in clonal contraction with respect to the end of antigen stimulation, which is shown to arise just from individual T cell decisions made according to the proposed mechanism.
|
En línea:
|
https://eprints.ucm.es/54957/7/Arias%2C%20C.F.%20et%20al.%202014.%20Amathematical%20model%20for%20a%20Tcell...pdf
|