Título:
|
Human amniotic membrane as newly identifed source of amniotic fuid pulmonary surfactant
|
Autores:
|
Lemke, Angela ;
Castillo-Sánchez, José Carlos ;
Prodinger, Florian ;
Ceranic, Asja ;
Hennerbichler-Lugscheider, Simone ;
Pérez Gil, Jesús ;
Redl, Heinz ;
Wolbank, Susanne
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Nature Publishing Group, 2017-07-25
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias Biomédicas: Biología: Biología molecular
,
Materia = Ciencias Biomédicas: Biología: Bioquímica
,
Tipo = Artículo
|
Resumen:
|
Pulmonary surfactant (PS) reduces surface tension at the air-liquid interface in the alveolar epithelium of the lung, which is required for breathing and for the pulmonary maturity of the developing foetus. However, the origin of PS had never been thoroughly investigated, although it was assumed to be secreted from the foetal developing lung. Human amniotic membrane (hAM), particularly its epithelial cell layer, composes the amniotic sac enclosing the amniotic fuid. In this study, we therefore aimed to investigate a potential contribution of the cellular components of the hAM to pulmonary surfactant found in amniotic fuid. We identifed that cells within the native membrane contain lamellar bodies and express all four surfactant proteins as well as ABCA3. Lipidomic profling by nanoESI – MS/MS revealed the presence of the essential lipid species as found in PS. Also, the biophysical activity of conditioned cell culture supernatant obtained from hAM was tested with captive bubble surfactometry. hAM supernatant showed the ability to reduce surface tension, similar to human PS obtained from bronchoalveolar lavage. This means that hAM produces the essential PS-associated components and can therefore contribute as second potential source of PS in amniotic fuid aside from the foetal lung.
|
En línea:
|
https://eprints.ucm.es/46515/1/Lemke%2C%20A.%20et%20al.%202017.%20Human%20amniotic%20membrane.pdf
|