Título:
|
Presentations of the unit group of an order in a non-split quaternion algebra
|
Autores:
|
Corrales Rodrigáñez, Carmen ;
Jespers, Eric ;
Leal, Guilherme ;
Rio, Ángel del
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsvier, 2004
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
We give an algorithm to determine a finite set of generators of the unit group of an order in a non-split classical quaternion algebra H(K) over an imaginary quadratic extension K of the rationals. We then apply this method to obtain a presentation for the unit group of H(Z[(1+root-7)/(2)]). As a consequence a presentation is discovered for the orthogonal group SO3(Z[(1+root-7)/(2)]). These results provide the first examples of a characterization of the unit group of some group rings that have an epimorphic image that is an order in a non-commutative division algebra that is not a totally definite quaternion algebra.
|
En línea:
|
https://eprints.ucm.es/id/eprint/14942/1/01.pdf
|