Título:
|
Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces
|
Autores:
|
Etayo Gordejuela, J. Javier ;
Martínez García, Ernesto
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Matematisk Institut, Universitetsparken NY Munkegade, 2004
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
We construct a special type of fundamental regions for any Fuchsian group $F$ generated, by an even number of half-turns, and for certain non-Euclidean crystallographic groups (NEC groups in short). By comparing these regions we give geometrical conditions for F to be the canonical Fuchsian subgroup of one of those NEC groups. Precisely speaking, we deal with NEC groups of algebraic genus 0 having all periods in the signature equal to 2. By means of these conditions we give a characterization of hyperelliptic and symmetric Riemann surfaces.
|