Título:
|
Generalized Wald-type tests based on minimum density power divergence estimators
|
Autores:
|
Basu, A. ;
Mandal, A. ;
Martin, N. ;
Pardo Llorente, Leandro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Taylor & Francis Group Ltd, 2015
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = En prensa
,
Materia = Ciencias: Matemáticas: Estadística matemática
,
Tipo = Artículo
|
Resumen:
|
In testing of hypothesis, the robustness of the tests is an important concern. Generally, the maximum likelihood-based tests are most efficient under standard regularity conditions, but they are highly non-robust even under small deviations from the assumed conditions. In this paper, we have proposed generalized Wald-type tests based on minimum density power divergence estimators for parametric hypotheses. This method avoids the use of nonparametric density estimation and the bandwidth selection. The trade-off between efficiency and robustness is controlled by a tuning parameter ?. The asymptotic distributions of the test statistics are chi-square with appropriate degrees of freedom. The performance of the proposed tests is explored through simulations and real data analysis
|
En línea:
|
https://eprints.ucm.es/29619/1/1403.7616v3.pdf
|