Título:
|
A quantum version of Wielandt's inequality
|
Autores:
|
Sanz, Mikel ;
Pérez García, David ;
Cirac, Juan I. ;
Wolf, Michael
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IEEE, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Presentado
,
Materia = Ciencias: Física: Física matemática
,
Materia = Ciencias: Física: Teoría de los quanta
,
Tipo = Artículo
|
Resumen:
|
In this paper, Wielandt's inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bound, dichotomy theorems for the zero--error capacity of quantum channels and for the Matrix Product State (MPS) dimension of ground states of frustration-free Hamiltonians are derived. The obtained inequalities also imply new bounds on the required interaction-range of Hamiltonians with unique MPS ground state.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12162/1/0909.5347v2.pdf
|