Título:
|
New quasi-exactly solvable hamiltonians in 2 dimensions
|
Autores:
|
González López, Artemio ;
Kamran, Niky ;
Olver, Peter J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 1994-01
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
Quasi-exactly solvable Schrodinger operators have the remarkable property that a part of their spectrum can be computed by algebraic methods. Such operators lie in the enveloping algebra of a finite-dimensional Lie algebra of first order differential operators-the" hidden symmetry algebra. "In this paper we develop some general techniques for constructing quasi-exactly solvable operators. Our methods are applied to provide a wide variety of new explicit two-dimensional examples (on both flat and curved spaces) of quasi-exactly solvable Hamiltonians, corresponding to both semisimple and more general classes of Lie algebras.
|
En línea:
|
https://eprints.ucm.es/32877/1/gonzalezlopez49preprint.pdf
|