Título:
|
Homomorphisms between algebras of differentiable functions in infinite dimensions
|
Autores:
|
Llavona, José G. ;
Aron, Richard M. ;
Gómez Gil, Javier
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Michigan Mathematical Journal, 1988
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
Let E and F be two real Banach spaces. For n = 0, 1, ...,1, let Cnw ub(E; F) be the space of n-times continuously differentiable functions f: E ! F such that, for each integer j _ n and each x 2 E, both the jth derivative mapping fj : E ! P(jE; F) and the polynomial fj(x) are weakly uniformly continuous on bounded subsets of E. This paper studies the characterization of the homomorphisms of the type A: Cnw ub(E;R) ! Cm wub(F;R) in terms of mappings g: F00 ! E00 which are differentiable when the biduals E00 and F00 are endowed with their bw_ topologies. The authors prove that every such homomorphism is automatically continuous when the spaces Cnw ub are given their
natural topology.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16420/1/GLlavona23.pdf
|