Título:
|
A power structure over the Grothendieck ring of varieties
|
Autores:
|
Gusein-Zade, Sabir Medgidovich ;
Luengo Velasco, Ignacio ;
Melle Hernández, Alejandro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
International Press, 2004
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Teoría de números
,
Tipo = Artículo
|
Resumen:
|
Let R be either the Grothendieck semiring (semigroup with multiplication) of complex quasi-projective varieties, or the Grothendieck ring of these varieties, or the Grothendieck ring localized by the class \L of the complex affine line. We define a power structure over these (semi)rings. This means that, for a power series A(t)=1+?i=1?[Ai]ti with the coefficients [Ai] from R and for [M]?R, there is defined a series (A(t))[M], also with coefficients from R, so that all the usual properties of the exponential function hold. In the particular case A(t)=(1?t)?1, the series (A(t))[M] is the motivic zeta function introduced by M. Kapranov. As an application we express the generating function of the Hilbert scheme of points, 0-dimensional subschemes, on a surface as an exponential of the surface.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16623/1/Luengo10.pdf
|