Título:
|
Multivalued maps, selections and dynamical systems
|
Autores:
|
Sánchez Gabites, Jaime Jorge ;
Rodríguez Sanjurjo, José Manuel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science, 2008-04
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
Under suitable hypotheses the well known notion of first prolongational set J(+) gives rise to a multivalued map Psi : X -> 2(X) which is continuous when the upper semifinite topology is considered in the hyperspace of X. Some important dynamical concepts such as stability or attraction can be easily characterized in terms of Psi and moreover, the classical result that an attractor in R '' has the shape of a finite polyhedron can be reinforced under the hypotheses that the mapping Psi is small and has a selection.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16782/1/RodSanjurjo05.pdf
|