Título:
|
Geometrical entropies. The extended entropy
|
Autores:
|
Zoido Chamorro, Jesús Manuel ;
Carreño Sánchez, Fernando
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 2000-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Optica
,
Materia = Ciencias: Física: Partículas
,
Materia = Ciencias: Física: Termodinámica
,
Tipo = Artículo
|
Resumen:
|
By taking into account a geometrical interpretation of the measurement process [1, 2], we define a set of measures of uncertainty. These measures will be called geometrical entropies. The amount of information is defined by considering the metric structure in the probability space. Shannon-von Neumann entropy is a particular element of this set. We show the incompatibility between this element and the concept of variance as a measure of the statistical fluctuations. When the probability space is endowed with the generalized statistical distance proposed in reference [3], we obtain the extended entropy. This element, which belongs to the set of geometrical entropies, is fully compatible with the concept of variance. Shannon-von Neumann entropy is recovered as an approximation of the extended entropy. The behavior of both entropies is compared in the case of a particle in a square-well potential.
|
En línea:
|
https://eprints.ucm.es/46447/1/Zoido_geometrical%20emtropies-Springer-2000.pdf
|