Título: | Boundedness and blow up for a semilinear reaction-diffusion system |
Autores: | Escobedo, M. ; Herrero, Miguel A. |
Tipo de documento: | texto impreso |
Editorial: | Elsevier, 1991-01 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Ecuaciones diferenciales , Tipo = Artículo |
Resumen: |
We consider the semilinear parabolic system (S) { ut-?u=vp ; vt-?v=uq, where x ? R(N) (N ? 1), t > 0, and p, q are positive real numbers. At t=0, nonnegative, continuous, and bounded initial values (u0(x), v0(x)) are prescribed. The corresponding Cauchy problem then has a nonnegative classical and bounded solution (u(t, x), v(t, x)) in some strip S(T)= [0, T) x R(N), 0 0 : u, v remain bounded in S(T)}. We show in this paper that if 0 1 and (? + 1 ) / (pq - 1) ? N/2 with ? = max {p, q}, one has T* |
En línea: | https://eprints.ucm.es/id/eprint/17443/1/Herrero47.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |