Resumen:
|
To study the deep structure of El Hierro Island, Canarian Archipelago, we have used a microseismic sounding method (MSM) based on the fact that heterogeneities of the Earth's crust disturb the spectrum of the low-frequency microseismic field in their vicinity. So, at the Earth's surface, the spectral amplitudes of definite frequency f above the high-velocity heterogeneities are decreasing, and above the low-velocity ones they are increasing. Moreover, the frequency f is connected with the depth of a heterogeneity H and the velocity of the fundamental mode of Rayleigh waves V (R)(f) through the relation H a parts per thousand 0.4V (R)(f)/f. From these relations, the MSM lets us model the subsurface structure in a 3D context by inverting the amplitude-frequency spatial distribution of the microseismic field of low frequency. The validity of the method is shown through of numerical simulations and previous applications with known or verified solutions. This MSM is now used to invert the microseismic data registered in El Hierro Island. The obtained subsurface model reveals two large intrusive bodies beneath the island. Joint interpretation of microseismic and gravimetric data and their comparison with the available geological studies relate the central-eastern intrusive body to the early stage of the island formation. With respect to the western intrusive body, at the depths of 15-25 km, an area with lowest seismic velocities is identified, where we suggest that a modern magmatic reservoir is located. This reservoir could be associated with the recent submarine eruption in October 2011 and the accompanying seismic swarm, which started in July 2011. Several correlations between the shallowest structures identified by the gravity and MSM approaches are also found. Besides the numerical simulation and previous studies of this method, the correlation between gravity results, the MSM model, the geological information and the possible explanation of the features of the seismic swarm through the model obtained offer us a valid proof about the plausibility of the subsurface structures identified from MSM.
|